
Brian Leathem - Optimizing Data Access
All things Open 2018

Optimizing Data Access

For Frontend Use Cases
With A Modular Api Gateway

Naming things is hard!

What I meant was...

Discuss how we can :

Enable frontend developers to
access the data they need to drive
their user’s experiences.

The Pattern I’ll describe is best
known as “Backend for Frontend”.

Brian Leathem

Senior Software Engineer @ Netflix
- Edge Developer Productivity

@brianleathem

Who am I?

The Ideal Developer
Experience

Brian Leathem - Optimizing Data Access
All things Open 2018

No legacy codebase
No technical debt
No features to support

Other than those ahead of you!

Rapid turnaround!
- Run the whole stack on your

laptop
- Easy debugging

GreenField:
A developer’s bliss

And yet our front end developer
yearns for more simple times...

When she could:
- Work independently
- Achieve a high velocity
- Debug a simple stack
- Run everything locally

The good old days

@ Scale

Brian Leathem - Optimizing Data Access
All things Open 2018

Brian Leathem - Optimizing Data Access
All things Open 2018

Backend For Frontend
(BFF)

Brian Leathem - Optimizing Data Access
All things Open 2018

https://samnewman.io/patterns/architectural/bff/

https://samnewman.io/patterns/architectural/bff/

How we Built our BFF

Brian Leathem - Optimizing Data Access
All things Open 2018

● Node.js
● Restify for HTTP
● Eureka for service registration

and discovery
● Archaius for configuration

management
● Atlas for metrics

Inside the container

https://github.com/nodejs
https://github.com/restify/node-restify
https://github.com/Netflix/eureka
https://github.com/Netflix/archaius
https://github.com/Netflix/atlas

Requirements:
● Fine grained data access
● Aggregate multiple paths into a

single network call
● Fault tolerant responses

REST isn’t a good fit.

Falcor: distributed JSON graph

https://netflix.github.io/falcor/

The Client Data Request

https://netflix.github.io/falcor/

- A production ready container
platform

- Integration with AWS
- Netflix OSS integration

https://netflix.github.io/titus/

Scaling traffic with Titus

https://netflix.github.io/titus/

Dynamic Routing with Zuul
https://github.com/Netflix/zuul

Dynamic Routing

https://github.com/Netflix/zuul

Multiple deployed versions of a BFF
endpoint to support

Client has a hardcoded endpoint

Deploy patch releases to a given
endpoint

Scaling Versions

The Developer Experience

Brian Leathem - Optimizing Data Access
All things Open 2018

Map client requests into backend
requests

From the client:
- Path requests from a Falcor

client

From the backend:
- Use the DNA API to retrieve the

required data

The Developers Goal

Sample Client Code
function getShowInfo(context) {
 const paths = [
 ['videos', showId, 'title'],
 ['currentProfile', 'preferredExperience'],
 ['videos', showId, 'seasons', 'length'],
 ['videos', showId, 'seasons', {to:9}, ['number', 'numberLabel', 'title', 'id']],
 ['videos', showId, 'seasons', {to:9}, 'episodes', 'length'],
 ['videos', showId, 'seasons', {to:9}, 'episodes', {to:30},

['summary', 'volatile', 'downloadAssetDetails']
]

];
 return model.get(paths);
}

 {
 pattern: ['videos', integerKey('videoId'), 'title'],
 get({ path, params }, cb) {
 const query = api
 .videos(params.videoId)
 .pluckTitle();

 this.client.get(query, function clientDone(err, response) {
 if (err) {
 return cb(PathTerminationError({ cause: err }));
 }
 const { data } = response.get(query);
 return cb(null, { path: value: _.get(data, 'title') });
 });
 }
 },

Server-side Route Implementation

Map client requests into backend
requests

From the client:
- Path requests from a Falcor

client

From the backend:
- Use the DNA.js API to retrieve

the required API

Data Discovery:
Comprehensive API docs

● Typesafe autocomplete

● Execution against live data
○ Instant feedback
○ Error reporting

Data Discovery:
Online REPL

Develop in container

Develop in a prod-like environment

Mount the application folder into the
local image

* Exclude node_modules !

Run nodemon within the container to
watch for changes

Debug in container

Debug in a prod-like environment

Expose the node.js debug port from
the container

Test in container

Unit tests:
- Rest route handler functions

directly

Integration tests:
- Test in-process with mocked

platform components

Functional tests:
- Black-box testing of the exposed

endpoints

Traditional Pyramid of
Testing

Inverted
Pyramid of
Testing

Diamond of Testing

Brian Leathem - Optimizing Data Access
All things Open 2018

Conclusion
BFFs aligned with frontend teams enable:

- Evolve the front and backends together, quickly
- Fluidity in deciding where functionality lives

However...

- Increased complexity
- Require staffing to develop, rollout, and maintain

Identify which pieces work best for your use case

Thank you

@brianleathem

https://twitter.com/brianleathem

